Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability
نویسندگان
چکیده
Lithium-oxygen batteries with high theoretical energy densities have great potential. Recent studies have focused on different cathode architecture design to address poor cycling performance, while the impact of interface stability on cathode side has been barely reported. In this study, we introduce CoO mesoporous spheres into cathode, where the growth of crystalline discharge products (Li2O2) is directly observed on the CoO surface from aberration-corrected STEM. This CoO based cathode demonstrates more than 300 discharge/charge cycles with excessive lithium anode. Under deep discharge/charge, CoO cathode exhibited superior cycle performance than that of Co3O4 with similar nanostructure. This improved cycle performance can be ascribed to a more favorable adsorption configuration of Li2O2 intermediates (LiO2) on CoO surface, which is demonstrated through DFT calculation. The favorable adsorption of LiO2 plays an important role in the enhanced cycle performance, which reduced the contact of LiO2 to carbon materials and further alleviated the side reactions during charge process. This compatible interface design may provide an effective approach in protecting carbon-based cathodes in metal-oxygen batteries.
منابع مشابه
Nanoengineered Ultralight and Robust All-Metal Cathode for High-Capacity, Stable Lithium–Oxygen Batteries
The successful development of Li-O2 battery technology depends on resolving the issue of cathode corrosion by the discharge product (Li2O2) and/or by the intermediates (LiO2) generated during cell cycling. As an important step toward this goal, we report for the first time the nanoporous Ni with a nanoengineered AuNi alloy surface directly attached to Ni foam as a new all-metal cathode system. ...
متن کاملA Comparative Spectroscopic Study of Graphene - coated vs Pristine Li ( Mn , Ni , Co ) Oxide Materials for Lithium - ion Battery Cathodes
The structural properties of pristine and graphene-coated Li(Li0.2Mn0.54Ni0.13Co0.13)O2 materials were studied by the spectroscopic methods, such as Raman spectroscopy, FTIR, and synchrotron XAS. The result from Raman spectroscopy implies that the graphene coating may suppress the monoclinic phase in the pristine material and thus lead to improved stability of the cathode. The combined analyses...
متن کاملAld - Enabled Cathode - Catalyst Architectures for Li - O 2 Batteries
Title of Dissertation: ALD-ENABLED CATHODE-CATALYST ARCHITECTURES FOR LI-O2 BATTERIES Marshall Adam Schroeder, Doctor of Philosophy, 2015 Directed By: Professor Gary W. Rubloff Minta Martin Professor of Engineering Department of Materials Science and Engineering Institute for Systems Research The Li-O2 electrochemical redox couple is one of the prime candidates for next generation energy storag...
متن کاملPoly(benzoquinonyl sulfide) as a High‐Energy Organic Cathode for Rechargeable Li and Na Batteries
In concern of resource sustainability and environmental friendliness, organic electrode materials for rechargeable batteries have attracted increasing attentions in recent years. However, for many researchers, the primary impression on organic cathode materials is the poor cycling stability and low energy density, mainly due to the unfavorable dissolution and low redox potential, respectively. ...
متن کاملHigh Performance C/S Composite Cathodes with Conventional Carbonate-Based Electrolytes in Li-S Battery
High stable C/S composites are fabricated by a novel high-temperature sulfur infusion into micro-mesoporous carbon method following with solvent cleaning treatment. The C/S composite cathodes show high Coulombic efficiency, long cycling stability and good rate capability in the electrolyte of 1.0 M LiPF6 + EC/DEC (1:1 v/v), for instance, the reversible capacity of the treated C/S-50 (50% S) cat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015